O-ACYLATON OF KETOXIMES OF THE FURAN AND THIOPHENE SERIES IN THE LIQUID-SOLID BODY SYSTEM UNDER INTERPHASE CATALYSIS CONDITIONS

É. Abele, Yu. Popelis, M. Gavars, A. Gaukman, M. Shimanska, and É. Lukevich

The acylation of 2-furanyl- and 2-thienylalkylketoximes by acyl chlorides in a two-phase catalytic system (solid $K_2CO_3 - C_6H_6 - 18$ -crown-6) at room temperature leads to a selective formation of the corresponding O-acetylketoximes in the form of a mixture of E- and Z-isomers.

O-Acylated derivatives of furan- and thiophenealdoximes and ketoximes exhibit antibacterial [1, 2], antifungal [2], and also insecticidal [1, 3], acaricidal [1, 3], fungicidal [4], herbicidal [5], pesticidal [6], and plant-regulating [7] activities. 2-Acetylfuran O-acetyloxime causes coagulation of thrombocytes in rabbits and guinea pigs [8]. Acylaldoximes are used in petrochemistry as additives to lead-containing benzines to increase the octane number [9]. Compounds of this series were less studied than the corresponding O-ethers [10].

The O-acyl derivatives of oximes of the furan and thiophene series are usually obtained by the acylation of the corresponding oximes by acyl chlorides in the presence of pyridine [5, 11-15] of triethylamine [4]. The furan-containing aldoximes are acylated by acetic anhydride in the presence of pyridine, but the reaction is accompanied by a Beckmann rearrangement [16, 17].

We have carried out the acylation of 2-furyl- and 2-thienylalkylketoximes I-VII by carboxylic acid chlorides (R^3COCl) in a two-phase catalytic system (solid $K_2CO_3 - C_6H_6 - 18$ -crown-6) at room temperature. Under these conditions the acylation of oximes leads readily and selectively to the formation of O-acyl derivatives isolated by crystallization or by distillation *in vacuo* in yields of 42-95% in the form of a mixture of E- and Z-isomers.

 $\begin{array}{c|c} & & & & \\ R^{1} & & & \\ R^{1} & & \\ X & & \\ I - VII \end{array} \xrightarrow{\text{NOCI}/\text{solid} \text{ K}_{2}\text{CO}_{3}} & & & \\ \hline & & & \\ R^{1} & & X & \\ R^{1} & & \\ R^{1} & & \\ X & & \\ R^{1} & & \\ R^{1} & & \\ R^{1} & & \\ R^{2} & \\ R^{1} & & \\ R^{2} & \\$

 $I X = O, R^{1} = II, R^{2} = CII_{3}; II X = O, R^{1} = II, R^{2} = i-C_{3}II_{7}; III X = O, R^{1} = CII_{3}, R^{2} = i-C_{3}II_{7}; IV X = S, R^{1} = II, R^{2} = CII_{3}; V X = S, R^{1} = II, R^{2} = i-C_{3}II_{7}; VI X = S, R^{1} = Br, R^{2} = CII_{3}; VI X = S, R^{1} = Br, R^{2} = C_{2}II_{5}; a R^{3} = CI_{3}; b R^{3} = C_{2}H_{5}; c R^{3} = C_{6}II_{5}; d R^{3} = 2-thienyl: e R^{3} = t-C_{4}II_{0}$

The formation of nitrones and Beckmann rearrangement products does not occur under these conditions. The O-acylation method that has been developed does not require boiling the reaction mixture to complete the reaction.

The starting ketoximes I-VII were obtained by the reaction of the corresponding ketones with hydroxylamine hydrochloride in ethanol [18]. Ketoximes II-IV, VI, VII are mixtures of E- and Z-isomers [1]. We succeeded in isolating compound I in the form of an E-isomer, and oxime V as in Z-isomer.

Latvian Institute of Organic Synthesis, Riga, LV-1006. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 886-890, July, 1994. Original article submitted April 12, 1994.

Acyl chloride	Duration of reac- tion, h	Reaction product	mp or bp	Yield, %
CI13COCI	2	la	6787	70
C2H5COCI	1,5	Ib	104105	72
PhCOCl	3,5	10	9899 ^{*3}	84
(2-thienyl)COCl	2	Id	6975	82
(CH3)3CCOCI	1,5	le	7276	72
CI13COCI	1.5	IIa	5359	42
PhCOCI	2	llc	Oil	79
CH3COCI	1,5	IIIa	142143/10	69
PhCOCI	2	IIIe	142143/0,5	72
CH3COCI	2	IVa	115123	77
PhCOCI	1,5	IVc	6670	80
(2-thienyl)COCl	2,5	IVd	5356	65
CH3COCI	2.5	Va	115117/1.5	51
C2H5COCI	2,5	Vb	123125/1	57
CH5COCI	1.5	VIa	6977	94
PhCOCI	3	VIc	103111	59
CH3COCI	1.5	VIIa	5155	95
CitteCOCI	1.5	VIIb	4648	77
PhCOCI	3	VIIc	5559	77
	Acyl chloride CH_3COCI C_2H_5COCI PhCOCI (2-thienyl)COCI $(CH_3)_3CCOCI$ CH_3COCI PhCOCI CH_3COCI PhCOCI CH_3C	Acyl chlorideDuration of reac- tion, hCH3COCI2C2H3COCI1.5PhCOCI3.5(2-thienyl)COCI2(CH3)3CCOCI1.5PhCOCI2(CH3)3CCOCI1.5PhCOCI2CH3COCI1.5PhCOCI2CH3COCI1.5PhCOCI2CH3COCI2.5CH3COCI2.5CH3COCI2.5CH3COCI2.5CH3COCI2.5CH3COCI3CH3COCI1.5PhCOCI3CH3COCI1.5PhCOCI3CH3COCI1.5PhCOCI3	Acyl chlorideDuration of reac- tion, hReaction product CH_3COCI 2Ia C_2H_5COCI 1.5IbPhCOCI3.5Ic(2-thienyl)COCI2Id(CH_3)_3CCOCI1.5IeCH_3COCI1.5If aPhCOCI2IIf cCH_3COCI1.5IHaPhCOCI2IVaPhCOCI2IVaPhCOCI2IVaPhCOCI2.5IVdCH_3COCI2.5IVdCH_3COCI2.5VaCH_3COCI2.5VaCH_3COCI1.5VIaPhCOCI3VIcCH_3COCI1.5VIaPhCOCI1.5VIa	Acyl chlorideDuration of reac- tion, hReaction productmp or bpCH3COCI2Ia 6787^{+2} C2H3COCI1.5Ib 104105 PhCOCI3.5Ic 9899^{+3} (2-thienyl)COCI2Id 6975 (CH3)GCOCI1.5Ie 7276 CH3COCI1.5If a 5359 PhCOCI2IIcOilCH3COCI1.5IIIa $142143/10$ PhCOCI2IIIcOilCH3COCI2IVa 115123 PhCOCI2IVa 15123 PhCOCI2.5IVd 5356 CH3COCI2.5Va $115117/1.5$ C2H5COCI2.5Va $115117/1.5$ C113COCI1.5VIa 6977 PhCOCI2.5Va $115117/1.5$ C2H5COCI1.5VIa 6977 PhCOCI3VIc 103111 CH3COCI1.5VIa 6977 PhCOCI3VIc 103111

TABLE 1. Acylation Conditions of Furyl- and Thineylalkylketoximes I-VII and Physicochemical Characteristics of O-Acyl Derivatives Obtained

^{*}The ratio of E and Z-isomers in oximes I-V and VII was established by PMR spectroscopy; the procedure has been described previously in [1].

^{*2}According to the literature data, mp 75°C (Z-isomer); 95°C (E-isomer) [13].

*3According to the literature data, mp 84°C (Z-isomer); 97-98°C (E-isomer) [13].

The structure of the O-acyl derivatives of oximes obtained was confirmed by PMR spectroscopy. In the PMR spectra of the O-acyloximes there are two sharply differing groups of resonance signals. In the 6.1-8.3 ppm range multiplets are observed with chemical shifts and SSCC characteristic for three or two protons of the heterocyclic ring and also of the benzene and thiophene rings in the R³ substituent. The protons of the alkyl substituents of groups R¹, R² and R³ were recorded in the 1.2-3.6 ppm range. The oxime group has a descreening effect [19], and therefore the weak-field signals of the α -protons of the R² substituent appearing at 1.2-3.6 ppm are assigned to the E-isomer, while the similar multiplets in stronger fields are assigned to the Z-isomer. Since the ratio of the E- and Z-isomers in the initial ketoximes and in the acylation reaction products does not coincide in most cases, a partial E/Z-isomerization probably takes place.

Thus, the acylation method of 2-furyl- and 2-thienylalkylketoximes that has been developed is convenient, mild and selective for the synthesis of the corresponding O-acyl derivatives.

EXPERIMENTAL

The mass spectra were studied using solutions in $CDCl_3$ on a Bruker WH-90/DS spectrometer, using TMS as a standard. The mass spectra were recorded on a Kratos MS-25 chromato-mass spectrometer (70 eV) and on a MS-50 mass spectrometer (AEI) at an ionizing voltage of 70 eV, and the temperature of the ionizing chamber of 200°C. The GLC analysis was carried out on a Chrom-5 chromatograph with a flame-ionization detector and using a glass column filled with a 5% OV-17 on a chromosorb W-HP (80-100 mesh), at a thermostat temperature of 160-230°C. The melting points were determined on a Boetius type stage and are given uncorrected. 2-Bromothiophene, 18-crown-6 and pivaloyl chloride were products from the firm Fluka. The acetyl, propionyl and benzoyl chlorides were produced by Reakhim. 2-Thiophenecarbonyl chloride was

Reaction Stereo-		The furan and thiophene ring protons			Protons of substituents \mathbf{P}^2 and \mathbf{P}^3
product	15011015, 70	3-11	4-11	5-11 (CH3)	Troubles of substituents K and K
1	2	3	4	5	6
_					
Ia	65 (E)	6,91	6,49	7,54	2,25 (CII ₃); 2,31 (COCII ₃)
	35 (Z)	7,36	6,59	7,55	2,28 (CH ₃); 2,40 (COCH ₃)
lb	100 (E)	6,92	6,49	7,54	1,26 (CH ₂ <u>CH₃</u>); 2,31 (CH ₃); 2,54 (CH ₂)
Ic	100 (E)	7,00	6,52	7,58	2,45 (CH ₃); 7,47,7 & 8,08,2 (C_0H_5)
Id	70 (E)	6,98	6,51	7,57	2,43 (CII ₃); 7,16 (4'-11); 7,63 (5'-11); 7,94 (3'-11)
	30 (Z)	7,50	6,62	7,58	2,48 (CH ₃); 7,19 (4'-11); 7,65 (5'-11); 7,98 (3'-11)
le	100 (E)	6,93	6,49	7,54	1,33 (CMe ₃); 2,31 (CH ₃)
lla	90 (E)	6,90	6,47	7,53	1.34 (C11 <u>Me</u> ₂); 2,24 (C11 ₃); 3,51 (C11)
	10 (Z)	7,35	6,57	•2	1,32 (CH <u>Me</u> ₂); 2,28 (CH ₃); 3,51 (CH)
llс	15 (E)	6,98	6.50	•2	1,42 (C11 $\underline{Me_2}$); 3,56 (C11); 7,37,8 & 8,08,3(C ₆ 11 ₅)
	85 (Z)	7,32	6,59	7,59	1.39 (CII <u>Me2</u>); 3,40 (CII); 7.37,8 &8,08,3 (C ₆)I ₅)
Hla	40 (E)	6,79	6,08	(2,35)	1,34 (C11 <u>Me</u> ₂); 2,24 (C11 ₃); 3,41 (C11)
	60 (Z)	7,26	6,19	(2,37)	1,31 (CH <u>Me</u> ₂); 2,27 (CH ₃); 3,31 (CH)
llic	100 (Z)	7,21	6,19	(2,39)	$ \begin{array}{c} 1,38 (C11\underline{Me_2}); 3,37 (C11); \\ 7,37,6 \& 8,08,2 (C_611_5) \end{array} $
IVa	65 (E)	7,44	7.07	7,42	2,26 (C11 ₃); 2,40 (COC11 ₃)
	35 (Z)	7,58	7,15	7,67	2,32 (CH ₃); 2,50 (COCH ₃)
IVc	80 (E)	7,50	7,09	7,44	2,53 (C11 ₃); 7,47,6 & 8,18,3 (C ₀ 11 ₅)
	20 (Z)	7,61	7,17	7,68	2,59 (C11 ₃); 7,47,6 & 8,18,3 (C_6H_5)
IVd	70 (E)	7,49	7,09	7,44	2,51 (CI1 ₃); 7,16 (4'-11); 7,62 (5'-11); 7,94 (3'-11)
	30 (Z)	7,63	7,17	7,67	2,57 (CII ₃); 7,19 (4'-11); 7,69 (5'-11); 8,08 (3'-11)
Va	100 (Z)	7,59	7,14	7,62	1,36 (CH <u>Me</u> ₂); 2,29 (CH ₃); 3,28 (CH)
V b	100 (Z)	7,58	7,14	7.62	1,27 (CII ₂ CII ₃); 1,37 (CII <u>Me₂</u>); 2,59 (CII ₂ CII ₃); 3,28 (CII)
VIa	40 (E)	7,15	7,02	_	2,25 (CH ₃); 2,33 (COCH ₃)
	60 (Z)	7,29	7,13		2,33 (CH ₃); 2,45 (COCI1 ₃)
VIc	30 (E)	7,21	7,05		2,46 (CH ₃); 7,47,6 & 8,08,3 (C ₆ H ₅)
	70 (Z)	7,34	7,14		$ \begin{array}{c} 2,54 (C11_3); \ 7,47,6 \& \ 8,08,3 \\ (C_611_5) \end{array} $
VIIa	60 (E)	7.16	7,13		1,32 (CH_2CH_3); 2,33 (CH_3); 2,85 (CH_2CH_3)
	40 (Z)	7,31	7,04	-	$ \begin{array}{c} 1,21 (C11_2C11_3); \ 2,25 (C11_3); \ 2,78 \\ (\underline{C11_2}C11_3) \end{array} $

TABLE 2. Chemical Shifts (δ , ppm) of Protons of E- and Z-Isomeric O-Acylketoximes^{*}

*The SSCC of the ring protons differ little for the E- and Z-isomers and are practically independent from the substituents R^2 and R^3 : $J_{3.4} = 3.4$, $J_{3.5} = 0.8$ and $J_{4.5} = 1.8$ Hz (for furan rings); $J_{3.4} = 3.9$, $J_{3.5} = 1.2$ and $J_{4.5} = 5.0$ Hz (for thiophene rings).

*2The signal is masked by the signals of the second isomer.

Reaction product	Stereo- isomers, %	The furan and thiophene ring protons		iene	Protons of substituents P^2 and P^3
		3-11	4-11	5-11 (C113)	Thoms of substracting K and K
I	2	3	4	5	6
VIIb	100 (Z)	7,30	7,13	_	1,30 (CH ₂ <u>CH</u> ₃); 1,32 (COCH <u>2CH</u> ₃); 2,61 (<u>CH</u> ₂ CH ₃); 2,85 (CO <u>CH</u> ₂ CH ₃)
VIIc	40 (E)	7.22	7,06	-	1,33 (CH ₃); 2,90 (CH ₂); 7,47,7 & $8,08,3$ (C ₆ H ₅)
	60 (Z)	7,36	7,15	_	1,37 (CH3); 2,94 (CH2); 7,47,7 & 8,08,3 (C6H5)

TABLE 2 (continued)

TABLE 3. Mass Spectral Data of O-Acylketoximes*

Compound	m/z (I _{rel} , %)
la	$167 (9, M_{\odot}), 125(68), 108(16), 93(15), 68(26), 53(9), 43 (100), 39(58)$
Ib	181 (4, M ⁺), 125 (51), 109 (42), 94 (100), 68 (12), 64 (24), 57 (82), 37 (69)
1c ⁻²	229 (18, M ²), 122 (18), 105 (100), 77 (60), 51 (60), 39 (60)
$1d^2$	235 (13, M ²), 210 (2), 111 (100), 93 (4), 83 (5), 66 (5), 57 (5), 39 (27)
le	209 (5, M ⁺), 125 (16), 108 (7), 94 (14), 85 (15), 68 (6), 57 (100), 41 (25)
11 a	195 (7, M ⁺), 153 (38), 138 (17), 125 (30), 93 (52), 78 (14), 64 (26), 43 (100)
11c ²	257 (16, M ⁺), 226 (3), 198 (12), 122 (42), 105 (100), 94 (59), 77 (61), 65 (18), 51 (59), 43 (60), 39 (60), 27 (60)
IIIa	209 (10, M ⁺), 167 (38), 152 (14), 139 (27), 107 (62), 78 (40), 60 (16), 52 (43), 43 (100)
111c ^{*2}	271 (4, M ⁺), 198 (3), 122 (11), 105 (100), 77 (45), 51 (22), 43 (7)
1V a	183 (3, M ⁺), 139 (45), 123 (46), 108 (100), 95 (7), 82 (27), 67 (9), 56 (11), 41 (50)
IV c ²	245 (2, M ⁺), 122 (5), 110 (6), 105 (100), 77 (38), 51 (13), 39 (13)
IVd ²	251 (8, M ⁺), 210 (2), 128 (5), 124 (5), 110 (100), 83 (7), 57 (6), 45 (6), 39 (25)
Va ^{*2}	211 (9, M ⁺), 168 (67), 151 (33), 140 (25), 109 (38), 96 (11), 77 (9), 42 (100), 38 (24)
Vb	225 (2, M ⁺), 169 (20), 152 (8), 109 (60), 57 (100), 45 (46), 39 (34)
Vla	261 (3, M ⁺), 221 (19), 203 (30), 188 (43), 164 (9), 109 (15), 82 (20), 60 (15), 43 (100)
VIc ²	323 (11, M ⁺), 202 (4), 187 (10), 122 (13), 105 (100), 82 (46), 77 (60), 65 (24), 51 (61), 39 (18)
VIIa	275 (7, M ²), 233 (44), 216 (29), 190 (100), 138 (48), 109 (29), 82 (48), 64 (45)
V116 ^{°2}	289 (4, M ⁺), 232 (22), 215 (5), 187 (7), 122 (5), 82 (7), 57 (100), 45 (6), 29 (42)
VIIc ²	337 (11, M ⁺), 187 (25), 122 (41), 105 (100), 82 (55), 77 (60), 51 (58), 45 (34), 39 (26)

*The mass spectra of the E- and Z-isomers are identical.

.....

*²The mass spectra were run on a MS-30 apparatus (AEI).

obtained by the reaction of the corresponding acid with thionyl chloride according to a method described in [20]. The oximes of 2-acetylfuran (I), 2-methyl-1-(2-furyl)-1-propanone (II), 2-methyl-1-(5-methyl-2-furyl)-1-propanone (III), 2-acetylthiophene (IV), 2-methyl-1-(2-thienyl)-1-propanone (V), and 1-(5-bromo-2-thienyl)-1-propanone (VII), were obtained by the reaction of the corresponding ketones with hydroxylamine hydrochloride in the presence of KOH in ethanol [10]. 5-Bromo-2-acetylthiophene was obtained by the acylation of 2-bromothiophene with acetyl chloride according to Friedel – Crafts [21]. The oxime of 5-bromo-2-acetylthiophene (VI) was obtained by the reaction of the ketone with NH₂OH·HCl/KOH in ethanol [18]. Oxime VI was isolated in a yield of 60% in the form of a mixture of E- and Z-isomers (the E/Z ratio 25:75 according to the PMR spectroscopy data).

The results of the elemental analysis of the synthesized compounds correspond to the calculated data.

General Method of Acylation of Oximes I-VII by Acyl Chlorides under an Interphase Catalysis Condition (on the example of the acylation of 2-acetylfuran oxime (I) with acetyl chloride). A 4.15 g (30 mmoles) portion of a powdered

 K_2CO_3 was added to a solution of 1.25 g (10 mmoles) of oxime 1 and 0.26 g (1 mmole) of 18-crown-6 in 30 ml of anhydrous benzene, and then a solution of 1.42 ml (20 mmoles) of acetyl chloride in 5 ml of benzene was added dropwise in the course 30 min. The mixture obtained was stirred at room temperature for another 1.5 h (GLC control, 180°C). At the end of the reaction, the mixture was washed with water, the organic layer was separated, dried over CaCl₂, and filtered, benzene was evaporated at a reduced pressure, and the residue was crystallized from hexane. Yield, 1.1 g (70%) of compound Ia, mp 67-68°C in the form of a mixture of E- and Z-isomers (the E/Z ratio 65:35). The O-acylketoximes Ib-e, IIa, IVa, c, d, VIa, c and VIIa-c were obtained in a similar way. Compounds IIIa, c and Va, b were isolated by distillation *in vacuo*. The characteristics of the compounds obtained are listed in Tables 1-3.

REFERENCES

- 1. German Patent 2257062; Chem. Abs., 79, P42332w (1973).
- 2. US Patent 4061764; Chem. Abs., 88, P100348e (1978).
- 3. German Patent 2262189; Chem. Abs., **79**, P66160q (1973).
- 4. Eur. Patent 136640; Chem. Abs., 103, P22474e (1985).
- 5. German Patent 3545904; Chem. Abs., 107, P198109m (1987).
- 6. French Patent 2125659; Chem. Abs., 78, P159411s (1973).
- 7. US Patent 4451286: Chem. Abs., 101, P105791r (1984).
- 8. J. W. Constantine and F. A. Hochstein, Nature, 210, No. 5032, 164 (1966).
- 9. US Patent 3021204; Chem. Abs., 56, 11900d (1962).
- 10. E. Abele, Yu. Popelis, E. Lukevits, M. Shimanska, and Yu. Gol'dberg, Khim. Geterotsikl. Soedin., No. 1, 18 (1994).
- 11. L. Vargha and F. Gonczy, J. Am. Chem. Soc., 72, No. 6, 2738 (1950).
- 12. G. Ocskay and L. Vargha, Tetrahedron, 2, 140 (1958).
- 13. L. Vargha and G. Ocskay, Acta Chim. Acad. Sci. Hung., 19, No. 2-3, 143 (1959).
- 14. P. Sohar, G. Varsanyi, L. Vargha, and G. Ocskay, Acta Chim Acad. Sci. Hung., 40, No. 4, 431 (1964).
- 15. L. Lang, G. Horvath, L. Vargha, and G. Ocskay, Bull. Soc. Chim. France, No. 10, 2724 (1965).
- 16. N. P. Kostyuchenko, A. F. Oleinik, T. I. Vozyakova, K. Yu. Novitskii, and Yu. N. Sheinker, Khim. Geterotsikl. Soedin., No. 3, 312 (1974).
- 17. A. F. Oleinik, T. I. Vozyakova, N. I. Solov'eva, and K. Yu. Novitskii, Khim. Geterotsikl. Soediin., No. 8, 1026 (1975).
- R. L. Shriner, R. C. Fuson, D. Kertin, and T. Morill, Identification of Organic Compounds [Russian translation], Mir, Moscow (1983), p. 207.
- 19. E. Lustig, J. Phys. Chem., 65, 491 (1961).
- 20. Organic Synthesis, Vol. 4, John Wiley and Sons, New York (1925), p. 1.
- 21. Organic Synthesis, Vol. 12, John Wiley and Sons, New York (1932), p. 62.